A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces

نویسندگان

  • Lior Kogut
  • Izhak Etsion
چکیده

A model that predicts the static friction for elastic-plastic contact of rough surfaces is presented. The model incorporates the results of accurate finite element analyses for the elastic-plastic contact, adhesion and sliding inception of a single asperity in a statistical representation of surface roughness. The model shows strong effect of the external force and nominal contact area on the static friction coefficient in contrast to the classical laws of friction. It also shows that the main dimensionless parameters affecting the static friction coefficient are the plasticity index and adhesion parameter. The effect of adhesion on the static friction is discussed and found to be negligible at plasticity index values larger than 2. It is shown that the classical laws of friction are a limiting case of the present more general solution and are adequate only for high plasticity index and negligible adhesion. Some potential limitations of the present model are also discussed pointing to possible improvements. A comparison of the present results with those obtained from an approximate CEB friction model shows substantial differences, with the latter severely underestimating the static friction coefficient. @DOI: 10.1115/1.1609488#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Adhesion Model for Arbitrary Rough Surfaces

We present a 3D adhesion model based on the JKR theory applied locally for all contacting asperity couple and the calculations account the van der Waals interaction beside the externally applied force. Thus, equilibrium of the system is determined by an extremum in the free total energy and subsequently the contact and the adhesion parameters are computed for that particular position. The model...

متن کامل

A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces

An elastic-plastic model for contacting rough surfaces that is based on accurate Finite Element Analysis (FEA) of an elasticplastic single asperity contact is presented. The plasticity index Ψ is shown to be the main dimensionless parameter that affects the contact of rough surfaces. Below Ψ = 0.6 the contact problem is purely elastic and above Ψ = 8 it is mostly plastic. The mean real contact ...

متن کامل

Static Friction Experiments and Verification of an Improved Elastic-Plastic Model Including Roughness Effects

An experimental study was conducted to measure the static friction coefficient under constant normal load and different interface conditions. These include surface roughness, dwell time, displacement rate, as well as the presence of traces of lubricant and wear debris at the interface. The static friction apparatus includes accurate measurement of friction, normal and lateral forces at the inte...

متن کامل

Simulating Multibody Dynamics With Rough Contact Surfaces and Run-in Wear

The overall dynamics of a multibody system is actually a multi-scale problem because it depends a great deal on the local contact properties (coefficient of restitution, friction, roughness, etc). In this paper we found that the briefly presented force-based theory of plane dynamics for a multibody system with unilateral contacts was appropriate for simulating detailed multi-contact situations ...

متن کامل

Explaining the Virtual Universal Occurrence of Static

abstract Perturbation theory, simulations and scaling arguments predict that there should be no static friction for two weakly interacting flat atomically smooth clean solid surfaces. The absence of static friction results from the fact that the atomic level interfacial potential energy is much weaker than the elastic potential energy, which prevents the atoms from sinking to their interfacial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003